

Wind Turbine Blade Workshop February 24-25, 2004

Don W. Lobitz, dwlobit@sandia.gov Sandia National Laboratories Albuquerque, NM 87185-0708

Stability Issues

- Static panel buckling:
 - * Effect of scale
 - * Addition of carbon
- Dynamic resonance:
 - * Effect of scale
 - * Effect of softening
 - * Addition of carbon

- Stall flutter:
 - * Effect of scale
 - * Design for avoidance
- Classical flutter:
 - * Effect of scale
 - * Effect of design evolution
 - * Design for avoidance
 - * Accuracy of quasi-steady aerodynamics

- \bullet σ_{cr} independent of scale
- Introducing carbon fibers, E' > E, t' < t such that E't' = Et can reduce buckling margins: $\frac{\sigma'_{cr}}{\sigma} = \frac{t'}{t} < 1$

Dynamic Resonance Issues

- ω_{flap} , ω_{twst} , and Ω all scale with 1/L (L is the scale). Thus per rev natural frequencies do not change with scale.
- Softening the blade by increasing l to l' modifies per rev frequencies: $\frac{\omega'_{flap}}{\Omega'} = \frac{l}{l'} \frac{\omega_{flap}}{\Omega}$, $\frac{\omega'_{twst}}{\Omega'} = \frac{\omega_{twst}}{\Omega}$
- Introducing carbon fibers maintains stiffness while reducing weight, generally increasing per rev frequencies.

Stall Flutter Issues

- Usually occurs when a significant portion of the blade is experiencing aerodynamic stall.
- Probably independent of scale.
- Design for preclusion of stall flutter
 - * Make design choices that minimize the occurrence of stall pitch control, airfoil section, etc.
 - * Minimize distance between center of pressure and elastic axis
 - * Minimize thickness ratio, aspect ratio and camber
 - * Add edgewise and torsional damping

Classical Flutter Instability

• Issues:

- * Effect of scale and of evolution of design practices (larger modern designs versus older, simpler, much smaller designs)
- * Accuracy Of approximate quasi-steady aerodynamic theory (versus unsteady theory) in predicting classical flutter

• Characteristics:

- * Aerodynamic theories originally developed for fixed wing aircraft (Theodorsen)
- * Theories based on linear unsteady aerodynamics
- * Flutter mode characterized by simultaneous bending and pitching motion
- * Damping in flutter mode rises dramatically with airspeed before plunging to negative values at the flutter speed

Classical Flutter Issue: 2D Scaling

$$r_{\alpha}^{2} = \frac{\int \rho x^{2} dx}{b^{2} \int \rho dx} = \frac{I_{\alpha}}{b^{2} m}$$

$$x_{\alpha} = \frac{\int \rho x dx}{b \int \rho dx} = \frac{x_{cg}}{b}$$

$$\omega_h/\omega_\alpha$$
, a , $m/\pi\rho_\infty b^2$

- With the above dimensionless quantities held fixed, the reduced frequency, $k=\omega_{\alpha}b/U_{F}$, which gives the flutter speed, also remains fixed.
- For 2D U_F is independent of scale.

Extension to 3D FEM Model:

HAWT Blade Rotating in Still Air on a Fixed Hub

- Use FEM (beam elements) to model structure
- Invoke virtual work principle to incorporate aerodynamic loads into FEM matrices (spanwise variations in chord, twist, lift coefficient, permitted)
- Replace airspeed, U, with rotational speed, Ω , which provides a linear variation in airspeed from root to tip
- Include rotating coordinate system terms

$$[M_{s} + M_{a}(\Omega)]\{\dot{u}\} + [C_{s} + C_{C}(\Omega) + C_{a}(\omega, \Omega)]\{\dot{u}\} + [K_{s}(u_{0}, \Omega) + K_{cs}(\Omega) + K_{a}(\omega, \Omega)]\{\dot{u}\} = 0$$

 ω is the frequency of the flutter mode which is unknown a priori

Solution Details

- Frequency domain solutions required for consistency the Theodorsen Function (eigenvalue analysis)
- For a given rotational speed the frequency at which the Theodorsen function is evaluated (a priori) must coincide with the computed modal frequency of interest (iteration required)
- Rotational speed is increased until damping becomes negative (the onset of flutter)
- Generally the lowest rotational speed for flutter corresponds to the mode characterized by simple torsional motion

Validation Case: 3 Bladed 2m VAWT with Truss Tower

- Operating Speed: 360 rpm
- Flutter Speed (obs): 745 rpm
- Flutter Speed (pred): 680 rpm
- Flutter Mode Shape (obs): 1st flatwise mode coupled with 1st torsional mode at 90 deg phase
- Flutter Mode Shape (pred): as observed

Classical Flutter Test Cases

WindPACT Blade

Rated power	1.5 MW
Rotor diameter	70 m
Max rotor speed	0.342 hz (20.5 rpm)
Max blade chord	2.8 m
1st flapwise freq	1.233 hz (3.6p)
1st edgewise freq	1.861 hz
2 nd flapwise freq	3.650 hz
1 st torsional freq	9.289 hz

Combined Experiment Blade

Rated power	15 kW
Rotor diameter	10.1 m
Rotor speed	1.2 hz (72 rpm)
Blade chord	0.457 m
1st flapwise freq	4.8 hz (4.0p)

Classical Flutter: 3D Results for Test Cases

- Attempt to move the airfoil cg ahead of the elastic axis (mass balancing)
- Attempt to minimize the frequency ratio ω_k/ω_α , primarily by increasing ω_α .
- Add damping to the structure.
- Decrease blade aspect ratio.

Accuracy of Quasi-Steady Aerodynamics

Unsteady Aerodynamics

$$L = 2\pi\rho U^{2}b\left\{\frac{C(k)}{U}\dot{h} + C(k)\alpha + \left[1 + C(k)(1 - 2a)\right]\frac{b}{2U}\dot{\alpha} + \frac{b}{2U^{2}}\ddot{h} - \frac{b^{2}a}{2U^{2}}\ddot{\alpha}\right\}$$

$$M = 2\pi\rho U^{2}b\left\{d_{1}\left[\frac{C(k)}{U}\dot{h} + C(k)\alpha + \left[1 + C(k)(1 - 2a)\right]\frac{b}{2U}\dot{\alpha}\right] + d_{2}\frac{b}{2U}\dot{\alpha} + \frac{ab^{2}}{2U^{2}}\ddot{h} - \left(\frac{1}{8} + a^{2}\right)\frac{b^{3}}{2U^{2}}\ddot{\alpha}\right\}$$

- Set the Theodorsen function, $C(k = \omega b/U)$, equal to unity
- Eliminate terms involving $\ddot{h}, \dot{\alpha}, \ddot{\alpha}$

$$L = 2\pi\rho U^2 b \left\{ \frac{1}{U} \dot{h} + \alpha \right\}$$

$$M = 2\pi\rho U^2 b \left\{ d_1 \left[\frac{1}{U} \dot{h} + \alpha \right] \right\}$$

Quasi-Steady Aerodynamics

Frequency Domain Flutter Speed Predictions Using Unsteady and Quasi-Steady Theories

Damping Coefficient vs Rotor Speed for Flutter Mode

Time Domain Flutter Analysis Details

- ADAMS/AERODYN software used
- Blade constrained to remain in linear aerodynamic regime through judicious selection of lift curves
- Aerodynamic drag and pitching moments due to the airfoil section neglected
- BEDDOES (Beddoes-Leishman dynamic stall model) option used to model unsteady aerodynamics (contains time domain equivalent to Theodorsen Function)
- STEADY option used to model quasi-steady aerodynamics

Time Domain Flutter Speed Predictions Using the Unsteady and Quasi-Steady Theories

Comparison of Frequency Domain & Time Domain Flutter Speed Predictions

Summary and Conclusions

- Static Panel Buckling:
 - * σ_{cr} is independent of scale.
 - * Addition of carbon while maintaining stiffness reduces σ_{cr} .
- Dynamic Resonance:
 - * Per rev natural frequencies are independent of scale.
 - * Softening the blade generally reduces per rev frequencies.
 - * Addition of carbon while maintaining stiffness generally increases per rev frequencies.
- Stall Flutter:
 - * Probably independent of scale.
 - * Avoided primarily by avoiding stall conditions

Summary and Conclusions (cont.)

- Classical Flutter:
 - * Flutter speed for 2D and probably 3D models are independent of scale.
 - * For a larger, modern blade design the per rev flutter speed is significantly down from that of an older, simpler and much smaller blade design (by a factor of three).
 - * A moderate amount of twist/coupling produces a modest reduction in flutter speed (~12%).
 - * Use of quasi-steady (vs unsteady) aerodynamics yields drastic underpredictions of the flutter speed, adversely affecting blade design by:
 - -- Designing to avoid fictitious premature flutter
 - -- Designing without the full benefit of load-mitigating aerodynamic damping

